OPTEC LSV3 EXCIMER LASER – GENERAL OVERVIEW

Basics of UV light formation

Excimer lasers use a mixture of noble gases (Argon, Krypton or Xenon) and halogens (Fluorine, Chlorine or Bromine), both added in the order of several 0.1% in a Neon buffer gas. In given conditions of high pressure (several bars) and under electrical stimulation (in the kV range), the excited noble gas moves to an excited state that allows bonding with the halogen gas atoms. The bonding is temporary and the excited molecule quickly relaxes back to ground state. The excess of energy is given back as UV light emission.

A beam shaper converts the undefined mode structure of the emitted UV light into a top-hat beam profile, required for uniform materials machining.

Masks, beam shaping and part handling

Excimer lasers generally have broad spatial profile beams and focal point applications are rare. Most processing is performed using projection optics, where the beam is used to illuminate a mask, whose demagnified image is then focused on the part to be machined. The final machining pattern on the part can be built up from repetition of selected motifs associated with part motion in X, Y and laser firing.

The mask may outline various 2D designs which are then projected as a whole onto the part. Multiple static masks may be mounted on a motorized selector carousel. Dynamic masks are possible by the use of motorized slits or apertures.
Excimer laser micromachining

Two main mechanisms may occur during the UV laser ablation process of a material:

- In case of polymers machining, photo-chemical ablation is the predominant mechanism, where intermolecular bonds within the material are broken upon absorption of the laser energy. Material is removed without thermal effect. The penetration depth of the laser energy is inversely proportional to the absorption coefficient of the material at the given wavelength.

- Excimer machining may also involve a photo-thermal mechanism, where the laser energy is transferred within the material by conduction and converts into lattice vibration, resulting in melting and/or vaporization of the material. It is therefore dependent on the thermal diffusivity of the material. A short wavelength and short ns pulse duration allow to minimizing this thermal effect.

Part of the pulse energy may also be reflected at the sample surface. It occurs according to the reflectance of the material at the given wavelength and according to the surface finish, which may change during the ablation process.

Depending on the predominant mechanism, small residues may redeposit around the ablation zone. A post-cleaning of the substrate with e.g. a sonication bath helps to clean.

Needed energy densities are typically in the range of 1-10J/cm² at repetition rates up to several hundred Hz. Machining etch rates generally reach tenths of µm/shot.
UV laser ablation process

PDMS: 50 pulses - 300Hz - 0.4J/cm²

Float glass: 20um large, 10um deep channels
Properties of OPTEC LSV3 laser system

<table>
<thead>
<tr>
<th>Laser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>193nm</td>
</tr>
<tr>
<td>Maximum e.d.</td>
<td>10J/cm²</td>
</tr>
<tr>
<td>Rep rate max</td>
<td>300Hz</td>
</tr>
<tr>
<td>Feature size</td>
<td>5-250µm*</td>
</tr>
<tr>
<td>Mask demagnification</td>
<td>10-16X</td>
</tr>
<tr>
<td>UV resolution</td>
<td>1µm</td>
</tr>
<tr>
<td>Focus Range</td>
<td>50mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trade-off adjustment for e.d. vs spot size</th>
<th>32 motifs on motorized selector(*e.d. limit at 250µm)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Part Positionning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel range</td>
<td>100mmx100mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>1µm</td>
</tr>
<tr>
<td>Repeatability</td>
<td>1-2µm</td>
</tr>
<tr>
<td>Absolute accuracy</td>
<td><10µm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vision system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL image</td>
<td>colour</td>
</tr>
<tr>
<td>Zoom Ratio</td>
<td>12.5X motorized 1000X magnification</td>
</tr>
<tr>
<td>FOV</td>
<td>220µm min. 5mm max</td>
</tr>
</tbody>
</table>

Tested materials

Polyimide, PET, Parylene, PMMA, PC, SU8 and float glass were successfully patterned by the LSV3. Any new material is welcome for tests and development.

Machined depth of several materials for a fluence of 1J/cm²
50µm thick flexible Kapton shadow mask

100µm polyimide layer: circular cavity tailoring and small window through
PMMA: 100µm elliptical section grooves array

Float glass: 80µm wide, 10µm deep channel
Float glass: array of 40µm×40µm reservoirs, 10µm deep